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Abstract
We have made a thorough theoretical investigation of the interplay of spin–orbit interactions
(SOIs) resulting from Rashba, Dresselhaus and the lateral parabolic confining potential on the
energy dispersion relation of the spin subbands in a parabolic quantum wire. The influence of
an applied external magnetic field is also discussed. We show the interplay of different types of
SOI, as well as the Zeeman effect, leads to rather complex and intriguing electrosubbands for
different spin branches. The effect of different coupling strengths and different magnetic field
strengths is also investigated.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In recent years, spin-dependent phenomena in semiconductors
have been intensively investigated because of their potential
for future spin electronic (or spintronics) devices [1–9]. In
spintronic devices, the spin degree of freedom of electrons,
together with their charge, is used for realizing new device
concepts. These devices promise increased speed and
lower power consumption, and may offer new functionalities
having no counterpart in conventional electronic devices.
In order to manipulate the electron spin by means of
an electric field rather than by a magnetic field, many
of these proposed device structures rely on the spin–orbit
interaction (SOI). Two basic mechanisms of the SOI are
Rashba coupling [10] and Dresselhaus coupling [11]. The
former is caused by structural inversion asymmetry due to
the triangular potential well confining carriers in the plane of
the electron gas, while the latter is caused by bulk inversion
asymmetry in noncentrosymmetric materials. The spin–orbit
coupling parameter can be extracted from the characteristic
beating pattern in the magnetoresistance of a two-dimensional
electron gas [12] and can be controlled and manipulated by

conventionally adjusting a gate voltage [13]. This property
is the basis of the ballistic spin transistor proposed by Datta
and Das [14] and the nonballistic spin transistor by Schliemann
et al [15].

In the past two decades, much work has been done on
the spin–orbit interaction of two-dimensional electron gases
(2DEG) [16]. It has been shown that a restriction to a one-
dimensional channel is more appropriate to further improve
the performance of a spin transistor. Furthermore, a number
of novel concepts of spintronic devices relying on one-
dimensional carrier transport have been suggested [17–23].
Hence, the spin-dependent transport in one-dimensional
quantum wires with SOI have attracted a great deal of attention.
For example, the influence of Rashba SOI on the transport
in one-dimensional systems at zero magnetic field was
theoretically investigated by Moroz and Barnes [24, 25] and
Mireles and Kirczenow [26]. The transport properties in the
presence of a magnetic field perpendicular to the quantum well
plane have also been investigated both theoretically [27–30]
and experimentally [31–33]. Knobbe and Schäpers [28]
have demonstrated that the quantization due to the carrier
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confinement in a one-dimensional system with Rashba SOI,
compared to the case of a 2DEG, results in a modification
of the beating pattern of the magnetoresistance. Recently,
Lehnen et al [34] have shown the spin–orbit scattering length
is enhanced in narrow wires. Also the optical absorption in
quantum wires with SOI have been investigated [35, 36].

Physical properties of condensed matter systems are often
determined by the energy spectrum of charge carriers. Much
work has been devoted to investigate the spin–orbit effects
on the energy dispersion of 2DEG. Das et al [37] have
applied the tilted magnetic field technique to deduce the
zero-field splittings of 2D InGaAs/InAlAs heterostructures.
The interplay between the Zeeman, Rashba and Dresselhaus
interactions in quantum wells has been discussed in relation
to the violation of the Larmor theorem due to the SOIs [38]
and with the spin splitting of the Landau levels, charge- and
spin-density excitations [39] using an approximate analytical
solution of the quantum well SOI Hamiltonian. The
interplay between Zeeman and SOI has also been discussed
in [40] using the unitarily transformed Hamiltonian technique.
This interplay is very important for some specific devices,
such as for the nonballistic spin transistor [15]. The
situation is more intriguing for quantum wires. In the
presence of an external magnetic field, the interplay of
magnetic field, the SOI and the transverse confinement of
quantum wires leads to complicated and intriguing energy
dispersion and magnetotransport properties. Magnetosubbands
of semiconductor quantum wires with Rashba but without
Dresselhaus SOI under a magnetic field have been calculated
by Knobbe and Schäpers [28]. Pramanik et al [41] have
calculated magnetosubbands of semiconductor quantum wires
in the presence of both Rashba and Dresselhaus SOI,
where the transverse confinement is assumed an infinite high
rectangular well potential (hard-wall boundary conditions).
The effect of an in-plane magnetic field on the electron
transport in quasi-one-dimensional systems has also been
calculated [42–44]. Bandyopadhyay et al [45] have derived
the magnetoelectric subbands and eigenstates in a quantum
wire with Rashba and Dresselhaus SOI for three different
orthogonal orientations of the external magnetic field, but
their derivations are limited to only the lowest magnetoelectric
subband. Tserkovnyak and Halperin [46] have investigated
theoretically the magnetoconductance of cylindrical quasi-
one-dimensional nanowires carrying several quantum channels
confined near the surface. More recently, Sánchez et al
[47] have analyzed theoretically the transport properties of a
ballistic quantum wire with a spatially inhomogeneous Rashba
interaction in the presence of an external magnetic field giving
rise to Zeeman spin splitting.

In the works mentioned above, some spin–orbit interac-
tions have been neglected. But for strongly confined quantum
wires, spin–orbit interactions due to different mechanisms may
be present simultaneously. To the best of our knowledge, how-
ever, the effect due to the interplay among them has not been
analyzed thoroughly. In this paper, we investigate theoretically
the interplay of Rashba and Dresselhaus SOI, as well as the
SOI due to a parabolic lateral confining potential and the Zee-
man effect in a semiconductor quantum wire. We show that

the interplay of SOI due to different mechanisms and the Zee-
man effect leads to richer structures. The difference in the dis-
persion due to different spin–orbit interactions and the their
interplay would lead to different transport and optical proper-
ties, which may be used to identify the existence of specific
spin–orbit coupling mechanisms. This paper is organized as
follows. In section 2, we present our model describing Rashba
and Dresselhaus SOI, and the SOI due to lateral confinement
in a parabolic quantum wire. In section 3, numerical results
of the energy dispersion relation for electrosubbands are pre-
sented and discussed for different spin–orbit coupling parame-
ters and magnetic field strength. We first discuss the interplay
of the three different types of SOI in the absence of an external
magnetic field in section 3.1. Then in section 3.2, a magnetic
field is applied to the quantum wire and the influence of the
Zeeman effect is included. Conclusions are presented in sec-
tion 4.

2. Theoretical model

We consider a quantum wire defined by split gates on a two-
dimensional electron gas confined in a semiconductor quantum
well. We take the growth direction of the quantum well to
be along the z direction, the transverse lateral confinement is
along the x direction and the quantum wire is along the y
direction. We assume the quantum wire is relatively narrow
and the transverse confinement is well approximated as a
parabolic potential expressed by

V (x) = 1
2 m∗ω2

0x2, (1)

with the oscillator frequency given by ω0. We assume an
external magnetic field oriented along the z direction is applied
to the quantum wire, B = (0, 0, B), and take the vector
potential in the Landau gauge, A = Bxey = (0, Bx, 0). We
assume that the quantum well is sufficiently thin and only the
lowest subband in the z direction needs to be considered. Thus,
the single-particle Hamiltonian of the quantum wire is then
given by H = H0 + Hso, where

H0 = 1

2m∗ (p + eA)2 + V (x) + 1

2
g∗μBσ · B, (2)

is the part without SOI and Hso represents the SOI
Hamiltonian, respectively. The first term in H0 is the kinetic
contribution with m∗ the effective electron mass and p the
electron momentum vector, while the last term in H0 is
the Zeeman energy splitting with g∗ the effective Landé
gyromagnetic factor, μB = eh̄

2m0c the Bohr magneton and σ

the well-known Pauli spin matrix vector with σx = ( 0 1
1 0

)
,

σy = ( 0 −i
i 0

)
, σz = ( 1 0

0 −1

)
. Substituting the vector potential

and magnetic field vector, H0 can be explicitly written as

H0 = 1

2m∗ [p2
x + (py + eBx)2] + V (x) + 1

2
g∗μBσz B. (3)

The general form of the SOI Hamiltonian is derived from
the quadratic in υ/c expansion of the Dirac equation [24, 48]

Hso = h̄

(2m∗c)2
∇V (r) ·σ ×p = − h̄

(2m∗c)2
E(r) ·σ ×p. (4)
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This universal form does not restrict us to any particular
model of the potential V (r). Although this SOI has an
essentially relativistic nature, it nevertheless can give rise to an
observable modification of semiconductor band structure. For
the quantum wire considered here, Rashba SOI, Dresselhaus
SOI and the SOI due to the lateral parabolic confining potential
can arise.

The Rashba SOI arises from the asymmetry of the
quantum well induced by an uniform interface induced field
or by an external applied gate voltage along the z direction.
The Rashba SOI Hamiltonian is given by

HR = αR

h̄
ez[σ×(p+eA)] = αR

h̄
[σx(py+eBx)−σy px], (5)

where αR is the Rashba spin–orbit coupling parameter, which
can be varied by the gate electric field Ez .

The Dresselhaus SOI Hamiltonian is given by

HD = βD

h̄
σ · κ, (6)

where βD is the Dresselhaus spin–orbit coupling parameter,
which depends on the effective width and thickness of the
quantum wire and can be varied with a split gate potential that
controls the oscillator frequency (thus the effective width). As
mentioned above, we assume that the thickness of the quantum
wire is sufficiently thin such that 〈p2

z 〉 � 〈p2
y〉, 〈p2

x 〉. Then,
substituting the vector potential, the components of the vector
κ = (κx , κy, κz) can be written in a simplified form [41]:

κx = 1
2 {(px + eAx)[(py + eAy)

2 − (pz + eAz)
2]

+ [(py + eAy)
2 − (pz + eAz)

2]
× (px + eAx)} ≈ −px p2

z , (7)

κy = 1
2 {(py + eAy)[(pz + eAz)

2 − (px + eAx)
2]

+ [(pz + eAz)
2 − (px + eAx)

2]
× (py + eAy)} ≈ (py + eBx)p2

z , (8)

κz = 1
2 {(pz + eAz)[(px + eAx)

2 − (py + eAy)
2]

+ [(px + eAx)
2 − (py + eAy)

2]
× (pz + eAz)} ≈ pz[p2

x − (py + eBx)2]. (9)

Therefore, the Dresselhaus spin–orbit Hamiltonian can be
approximated as

HD ≈ βD

h̄
p2

z [σy(py + eBx) − σx px], (10)

by neglecting the σzκz term due to 〈pz〉 = 0. Thus, the
Dresselhaus spin–orbit coupling parameters are dependent on
the subband index in the z direction. Since we assume that
the quantum well is sufficient thin and consider only the
lowest subband in the z direction, thus we take the effective
Dresselhaus spin–orbit coupling parameter as a constant β ′

D =
βD〈p2

z 〉. Hereafter, we still use βD instead of β ′
D in the

remaining parts in our paper, i.e.

HD = βD

h̄
[σy(py + eBx) − σx px]. (11)

From the general form of the SOI Hamiltonian (4), the
Hamiltonian of the SOI coming from the transverse confining
potential is [27]

H T
so = γ

h̄

x

l0
ex [σ × (p + eA)] = γ

h̄

x

l0
σz(py + eBx). (12)

Here, γ is the spin–orbit coupling parameter and we neglect
the term σy pz due to 〈pz〉 = 0. We have also introduced a
length scale characterizing the strength of the lateral confining
potential l0 = √

h̄/m∗ω0. In addition to l0, for the quantum
wire considered, another four length scales can be introduced
to characterize the relative strengths of the magnetic field,
the Rashba SOI, the Dresselhaus SOI and the SOI due to the
transverse potential, respectively:

lB = √
h̄/eB = √

h̄/m∗ωc, lR = h̄2/2m∗αR,

lD = h̄2/2m∗βD, lT = h̄2/2m∗γ,
(13)

Correspondingly, there are five energy scales characterizing the
relative strengths, respectively:

h̄ω0, h̄ωc, 	R = m∗α2
R

2h̄2
,

	D = m∗β2
D

2h̄2
, 	T = m∗γ 2

2h̄2
.

(14)

where ωc = eB/m∗ is the cyclotron frequency.
Thus, the explicitly expressed total Hamiltonian is

H = 1

2m∗ p2
x + 1

2m∗ (py + eBx)2 + 1

2
m∗ω2

0x2 + 1

2
gμB Bσz

+ αR

h̄
[σx(py + eBx) − σy px]

+ βD

h̄
[σy(py + eBx) − σx px] + γ

h̄

x

l0
σz(py + eBx).

(15)

Due to the complex coupling between spin subbands in the
total Hamiltonian (15), we suppose that no analytic solution
of the Schrödinger equation can be obtained, apart from some
trivial limits. Therefore, we must solve the Schrödinger
equation numerically to achieve an insight about the interplay
of the SOI arising from different mechanisms.

Since the total Hamiltonian H is translationally invariant
along the wire, plane waves are taken along the y direction,
with wave numbers ky a good quantum number of the system.
We take the ansatz


(x, y) = φ(x) exp(iky y), (16)

so that the Schrödinger equation becomes separable in x and
y. By applying this ansatz, the Hamiltonian H0 reduces to

H0 =
[
− h̄2

2m∗
d2

dx2
+1

2
m∗ω2(x−x0)

2+ω2
0

ω2

h̄2k2
y

2m∗

]
+1

2
gμB Bσz,

(17)

3
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and the spin–orbit Hamiltonian Hso reduces to

Hso = αR

[
σx

(
ky + eB

h̄
x

)
+ iσy

d

dx

]

+ βD

[
σy

(
ky + eB

h̄
x

)
+ iσx

d

dx

]

+ γ
x

l0
σz

(
ky + eB

h̄
x

)
. (18)

Here, ω = (ω2
c +ω2

0)
1/2 is the effective oscillator frequency and

x0 = −(ωc/ω)2(h̄ky/eB) = −(ωc/ω)2l2
Bky is the guiding-

center coordinate for the harmonic oscillator.
The set of eigenfunctions of H0 obtained from the

Schrödinger equation for the system without spin–orbit
coupling H0φnσ (x) = E (0)

nσ φnσ (x) is given by

φnσ (x) = 1√√
π lω2nn! Hn

(
x − x0

lω

)

× exp

(
−1

2

(
x − x0

lω

)2)
χσ ,

with n = 0, 1, 2, . . . ; σ = ±, (19)

with lω = √
h̄/m∗ω the characteristic length of the harmonic

oscillator with the effective oscillator frequency, Hn(x) are the
Hermite polynomials of integer order n, while χ+ = ( 1

0

)
and

χ− = ( 0
1

)
are the spinors for up- and down-spin projected

in the z direction, respectively. The corresponding energy
eigenvalues are given by

E (0)
n± = h̄ω

(
n + 1

2

)
+ h̄2

2m∗
ω2

0

ω2
k2

y ± 1

2
gμB B. (20)

By expanding the transverse wavefunction φ(x) in
the basis of the eigenfunctions φnσ (x) of H0, φ(x) =∑

nσ anσφnσ (x), we can obtain the following equations for the
expanding coefficients:

(E (0)
nσ − E)anσ +

∑
m,σ ′

(Hso)
σσ ′
nm amσ ′ = 0. (21)

The matrix elements (HR)σσ ′
nm = 〈φnσ |HR|φmσ ′ 〉 are given by

(HR)±∓
nn = αR

(
1 − ω2

c

ω2

)
ky, (22)

(HR)±∓
nm = αR

lω

{(
ωc

ω
± 1

)√
n + 1

2
δn,m−1

+
(

ωc

ω
∓ 1

)√
n

2
δn,m+1

}
, n � 1. (23)

The matrix elements (HD)σσ ′
nm = 〈φnσ |HD|φmσ ′ 〉 are given by

(HD)±∓
nn = ±iβD

[
1 −

(
ωc

ω

)2]
ky, (24)

(HD)±∓
nm = (±i)

βD

lω

{(
ωc

ω
± 1

)√
n

2
δn,m+1

+
(

ωc

ω
∓ 1

)√
n + 1

2
δn,m−1

}
, n � 1. (25)

The matrix elements (H T
so)

σσ ′
nm = 〈φnσ |H T

so|φmσ ′ 〉 are given by

(H T
so)

±±
nn = ±

(
γ

l0

)(
ωc

ω

){(
n + 1

2

)

−
(

ωc

ω

)
l2
Bk2

y

[
1 −

(
ωc

ω

)2]}
(26)

(H T
so)

±±
n,m �=n = ±γ

l0
kylω

[√
n

2
δn,m+1 +

√
n + 1

2
δn,m−1

]

± 1

2

γ

l0

(
ωc

ω

)[√
n(n−1)δn,m+2+

√
(n + 1)(n + 2)δn,m−2

]
.

(27)

The matrix elements (HR(D))
±∓
nn couple opposite spins within

a given state n, whereas (HR(D))
±∓
nm couple neighboring

oscillator-level states with opposite spins due to the Rashba
(Dresselhaus) SOI, respectively. The matrix elements
(H T

so)
±±
nn lead to a level shift of oscillator-level states,

whereas (H T
so)

±±
n,m �=n couple neighboring and next-neighboring

oscillator-level states with the same spins. From the matrix
elements (H T

so)
±±
nn , we can see that the spin-slitting due to

the lateral spin–orbit coupling is n-dependent, which results
in the separation between different spin orientations within
a given state is larger for higher oscillator levels. By
exact numerical diagonalization of equation (21), the energy
dispersion relations and eigenfunctions of the magnetoelectric
subband in the wire can be obtained.

3. Numerical results and discussions

The actual strengths of Rashba and Dresselhaus SOIs are
discussed in many papers and it is believed that both of them
can be tuned to be of the same order [15]. In addition,
the strengths of Rashba and Dresselhaus SOIs in a quantum
wire can be varied with external gate potentials [49]. Then,
if the lateral confinement is sufficiently strong, the electric
field induced by the spatial non-uniformity of the confinement
potential may not be negligible in comparison with the Rashba
and Dresselhaus fields. Thus, we vary all three SOI strengths
over a wide range in this paper in order to elucidate the
interplay of different SOIs. We calculate the energy dispersion
relations of the subbands in the quantum wire by solving
equation (21) through an exact diagonalization. In section 3.1.
Then the interplay of the three different types of SOI in the
absence of an external magnetic field is discussed. Then
in section 3.2, we apply an external magnetic field to the
quantum wire and discuss the influence of the magnetic field
and Zeeman effect.

3.1. Without magnetic field

To identify the interplay of various SOIs due to different
mechanisms in the absence of an external magnetic field, we
present first in figure 1 the energy dispersion of a parabolic
confining quantum wire with an individual mechanism.
Figure 1 shows the energy dispersion in the presence of an
individual SOI mechanism with weak (	so/h̄ω0 = 0.01)
(figures 1(a) and (b)), moderate (	so/h̄ω0 = 0.1) (figures 1(c)
and (d)) and strong (	so/h̄ω0 = 1) (figures 1(e) and (f))

4
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Figure 1. Energy dispersion of the spin-split subbands at B = 0 for
weak 	so = 0.01 ((a) and (b)), moderate 	so = 0.1 ((c) and (d)), and
strong 	so = 1 ((e) and (f)) coupling. (a), (c) and (e) for Rashba or
Dresselhaus spin–orbit coupling, respectively. (b), (d) and (f) for
spin–orbit coupling due to parabolic transverse confining potential.
(	R, 	D and 	T are in units of h̄ω0.)

coupling parameters, respectively. The energy dispersion in
the absence of SOI is also presented as dashed lines for
comparison. Since the energy dispersion caused by Rashba
or Dresselhaus SOI are the same for the same characteristic
spin–orbit energy (i.e. 	R = 	D = 	so), we label one SOI
parameter with the other in parentheses in figures 1(a), (c),
and (e), respectively. The energy dispersion caused by the SOI
due to the lateral confinement potential in different coupling

strengths is shown in figures 1(b), (d), and (f), respectively. In
all figures presented in this paper, the energy scales are in units
of h̄ω0.

For a weak Rashba (or Dresselhaus) SOI, the twofold-
degenerate parabola for the two different spin orientations
within each subband splits into two horizontal displaced
parabolas with a degeneracy point at ky = 0. The
coupling between different subbands is negligible. A moderate
Rashba SOI leads to weak anticrossings between different
spin orientations within the same subband that occur at lower
ky values than the ky values at which weak coupling occurs
between different spin orientations and different neighboring
subbands. For a strong Rashba (or Dresselhaus) SOI, the
anticrossings for different spin orientation in neighboring
subbands are pronounced and occur at ky values, while the
anticrossings for different spin orientation within each subband
are weak and occur at higher ky values. In addition, the SOI
results in an uniformly downward energy shift of the subbands
by 	so compared to the unperturbed system at the degeneracy
points at ky = 0 [18, 50]. Eto et al [21] have discussed the
energy subbands in a hard-wall quantum wire and suggested
that a semiconductor point contact can be used as a spin
polarization filter. However, there are some differences in the
energy dispersion of the subbands between their results and
ours. In our case, the interplay of the parabolic confinement
and the spin–orbit coupling gives rise to coupling between
different spins within the same subband as terms (22) and (24),
and thus leads to anticrossing within the same subband as
shown in figure 1(c). These anticrossings are absent as the
coupling terms would disappear for hard-wall confinement
potential. Another different point is that the anticrossing due
to spin–orbit interaction is negligible for very weak coupling
(compared with the strength of the lateral confining potential
h̄ω0) as shown in figure 1(a). But this suppression is absent for
a hard-wall confinement potential as there is no such energy
scaling.

On the other hand, the SOI due to the lateral confinement
does not change the twofold spin degeneracy of the energy
dispersion for all quantum levels at all values of ky , but they
decrease the slope of the parabolic energy subbands for a weak
and a moderate spin–orbit coupling parameter. Because the last
term in (15) depends linearly on coordinate x in the absence of
magnetic field, the matrix elements of this linear term are zero
for both spin orientations within the same subband. Only in
the presence of a magnetic field, which leads to an additional
quadratically x-dependent term, do we have non-zero matrix
elements for both spin orientations within the same subband, as
shown in (26). From figure 1(f), we see that, when 	R = 0.5,
the subband bottoms become flat and the width of the flat
bottom is narrower for higher subbands. When 	R < 0.5, the
dispersion remain parabolic but with a flattened slope, while
for 	R > 0.5, the dispersion becomes a parabola with negative
slopes for small values of ky and then changes into a parabola
with positive slopes for large values of ky . The inflection of the
slopes changing from negative to positive becomes close to the
zero point of ky as the subband index n increases.

Having learned the effect of individual SOIs, we now turn
to the interplay of the different types of SOIs on electronic

5
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Figure 2. Energy dispersion of the spin-split subbands at B = 0 for
cases where spin–orbit interactions due to different mechanisms
present simultaneously and the coupling strength of Rashba and
Dresselhaus spin–orbit interaction are different. (a) 	R = 0.7 and
	D = 0.3, or vice versa, for 	T = 0. (b) 	R = 0.7 and 	D = 0.3
(black), or vice versa (red), for 	T = 0.3. (c) 	R = 0.7, 	D = 0,
and 	T = 0.5. (d) 	R = 0, 	D = 0.7, and 	T = 0.5. (	R, 	D and
	T are in units of h̄ω0.)

energy dispersion. In figure 2(a), we show the case where
Rashba and Dresselhaus SOIs present simultaneously with
	R = 0.7 and 	D = 0.3, or vice versa. Compared to the case
of individual SOIs, coupling between neighboring subbands is
remarkably enhanced and more anticrossings show up. The
cases where either Rashba or Dresselhaus SOI only coexists
with the SOI due to the lateral confinement are shown in
figures 2(c) and (d), respectively. We see that the presence
of the SOI due to the lateral confinement only enhances
considerably the anticrossings of spin branches in neighboring
subbands and in the vicinity of ky = 0. However, these
anticrossings are very weak for kys far from zero and look
like crosses in the figure. Furthermore, the two branches
in each subband become approximately degenerate for larger
values of ky . The presence of the lateral SOI also reduces the
energy splitting created by Rashba or Dresselhaus coupling. In
addition, the energy dispersion of the nth subband in a Rashba
SOI quantum wire is very similar to the energy dispersion
of the (n + 1)th subband in a Dresselhaus SOI quantum
wire for equal 	R and 	D but fixed 	T = 0.5. We note
that a similar situation has been investigated in [37], which

Figure 3. Energy dispersion of the spin-split subbands at B = 0 for
cases where spin–orbit interactions due to different mechanisms
present simultaneously and at least two of the coupling strengths are
equal. (a) 	R = 	D = 0.2, 	T = 0. (b) 	R = 0, 	D = 	T = 0.2.
(c) 	R = 	D = 	T = 0.2. (d) 	R = 	T = 0.2, 	D = 0. (	R, 	D

and 	T are in units of h̄ω0.)

discusses the pertinent issue more theoretically in terms of
the addition of angular momentum. The lowest subband is
almost degenerate and flat in the considered energy range for a
quantum wire with Dresselhaus and transverse SOIs. If three
types of SOI mechanisms present simultaneously (figure 2(b)),
more anticrossings occur in the energy dispersion (the two
cases for fixed 	T but reversed relative strength of Rashba and
Dresselhaus SOIs are shown).

The special case, where Rashba and Dresselhaus SOIs
present simultaneously and are of the same strength, should be
emphasized. Figures 3(a)–(d) show the cases where non-zero
spin–orbit coupling energy 	R = 	D, 	D = 	T, 	R = 	T

and 	R = 	D = 	T are all of 0.2, respectively. We see
that, for 	R = 	D, the anticrossings of different subbands are
almost completely canceled, and the dispersion seems to fully
restore the parabolic shape with a horizontal shift for two spin
branches, and thus different spin branches cross each other.
This is because the quantity of (σx ∓ σy)/

√
2 is conserved in

this special case and the spin state of the electrons becomes
independent of the wavevector. This conserved quantity is
related to the symmetry of time reversal [15]. But for 	D =
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Figure 4. Energy dispersion of the spin-split subbands under a weak
magnetic field of ωc = 0.1ω0 for cases of only one type of spin–orbit
interaction present. (a) Without spin–orbit interaction. (b) 	T = 0.2.
(c) 	R = 1. (d) 	D = 1. (	R, 	D and 	T are in units of h̄ω0.)

	T and 	R = 	T, parts of the anticrossings remain, and
there is a slight difference in the energy dispersions between
the cases of 	D = 	T and 	R = 	T (figures 3(b) and (d)).
However, for 	R = 	D = 	T (figure 3(c)), all the crosses
except at ky = 0 become anticrosses, and there is a difference
for the strength of anticrosses for different branches or at
different ky values. The special case has been emphasized
by several research groups, for example, Schliemann et al
[15] have suggested a nonballistic spin transistor based on this
characteristic, though the transistor is proposed to be along
the [110] crystallographic axis, whereas in the present work
the quantum wires are assumed to be made along the [010]
crystallographic axis.

3.2. With magnetic field

Now, we consider the influence of a perpendicular magnetic
field on the subband structures, since it is important for
elucidating the beating pattern in the magnetoresistance and
absorption spectra of magneto-optic transitions. Figures 4(a)–
(d) show the effect of a weak magnetic field of strength ωc =
0.1ω0 on the energy dispersion of a quantum wire. Without
spin–orbit coupling (figure 4(a)), the primary effect of this
weak magnetic field is to lift the degeneracy of the two different
spin orientations for each subband. However, due to the weak

Figure 5. Energy dispersion of the spin-split subbands under a strong
magnetic field of ωc = 1.5ω0 for cases with only one type of
spin–orbit interaction present. (a) Without spin–orbit interaction.
(b) 	R = 0.2. (c) 	D = 0.2. (d) 	T = 0.2. (	R, 	D and 	T are in
units of h̄ω0.)

field, the Zeeman splits are indistinguishable to the eye in
figure 4(a). If the SOI due to the lateral confining potential
presents (figure 4(b)), the twofold degeneracy of each subband
is lifted and the separation between the two different spin
orientations within each subband increases with n increasing,
remarkably in contrast to the zero-field case (figures 1(b), (d)
and (f)). Furthermore, the split branches have different slopes
and they cross each other. With strong Rashba or Dresselhaus
SOI (figures 4(c) and (d)), the dominant effect of this weak
magnetic field is to lift the degeneracy of the two different spin
orientations at ky = 0, thus the lower spin branches of each
subband develop a ‘camelback’ shape in the vicinity of ky = 0.
The anticrossing feature caused by the strong SOI at non-zero
ky is hardly affected.

Figures 5(a)–(d) show the energy dispersion of electrons
in a quantum wire with (figures 5(b)–(d)) and without
(figure 5(a)) an individual SOI under a strong magnetic field
of ωc = 1.5ω0. From figure 5(a), we see that, in the
absence of the SOI, the strong magnetic field lifts the twofold
degeneracy of different spin orientations in each subband by
the Zeeman effect. In addition, the subband separation is
increased from h̄ω0 to h̄ω, with ω = (ω2

c +ω2
0)

1/2. Figures 5(b)
and (c) show the energy dispersion with a moderate Rashba
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Figure 6. Energy dispersion of the spin-split subbands under a strong
magnetic field of ωc = 1.5ω0 for cases with only at least two types of
spin–orbit interactions present. (a) 	R = 1, 	D = 0, 	T = 0.2.
(b) 	R = 0, 	D = 1, 	T = 0.2. (c) 	R = 1 �= 	D = 0.3, 	T = 0.
(d) 	R = 	D = 1, 	T = 0. (e) 	R = 1 �= 	D = 0.3, 	T = 0.2.
(f) 	R = 	D = 1, 	T = 0.2. (	R, 	D and 	T are in units of h̄ω0.)

and Dresselhaus spin–orbit coupling of 	so/h̄ω0 = 0.2,
respectively. In contrast to the zero-field case, no remarkable
anticrossing of the subbands occurs in the energy range. Also
the lowest subband does not show the ‘camelback’ shape. Thus
the magnetic field suppresses the coupling strength between
different subbands. Compared to the zero magnetic field the
slope of the dispersion is smaller due to the increased effective
mass. Figure 5(d) shows the energy dispersion with a moderate

SOI due to lateral confinement under a strong magnetic field.
In this case, the branches are evidently divided into two groups
with very different slopes of the energy dispersion and they
cross each other.

In figure 6, we show the energy dispersion of electrons in
a quantum wire under a strong magnetic field in the presence
of at least two SOIs. From figures 6(a) and (b), we see that
dispersions of strong Rashba and Dresselhaus SOIs coexisting
with a lateral potential induced SOI are different, in contrast to
the zero-field case. Figures 6(c) and (d) show the cases where
Rashba and Dresselhaus SOIs are present simultaneously but
with different and same strength, respectively. As in the
zero-field case, anticrossings occur for different spin–orbit
coupling strengths, whereas crossings occur for same spin–
orbit coupling strengths. However, if the SOIs due to the
three different coupling mechanisms present simultaneously
(figures 6(e) and (f)), the SOI due to the transverse confinement
enhances significantly anticrossings for the different coupling
strength for Rashba and Dresselhaus SOIs, and converts the
crossings to anticrossings for the same coupling strength for
Rashba and Dresselhaus SOIs.

From the above numerical results, we see that the energy
dispersion of subbands is dependent on the interplay of all
different SOIs, as well as a perpendicular magnetic field.
The difference in the energy dispersions may induce different
transport patterns or optical transitions. For example, the
number of ballistic channels (defining the conductance) is
expected to be modified by changing some parameter, say,
by the lateral potential 	T, since it modifies dramatically
the subbands at the ky = 0 point, even turning negative
the sign of their curvatures. In addition, the degree of spin
polarization should be possible to control by changing SOI
strengths. All these influences on the interplay of all different
SOIs on the electron transport properties are very interesting
and may be demonstrated in experiments. Since we focus
on the dispersion of the subbands, we will investigate these
phenomena quantitatively in detail in a forthcoming paper.

4. Summary

We have made a thorough theoretical investigation of the
interplay of SOIs resulting from different mechanisms, such
as Rashba SOI, Dresselhaus SOI and the SOI due to the
lateral parabolic confining potential, on the energy dispersion
relations of the spin subbands in a quantum wire. The two
cases in the absence of and in the presence of an external
magnetic are investigated. We show the interplay leads
to a rather complex level spectrum for different coupling
parameters and for different magnetic field strengths. The
difference in the energy dispersions and their induced transport
or optical properties in different cases may be used to identify
the existence of some type of SOI mechanism or extract the
coupling parameter values. Furthermore, by changing SOI
strengths via controlling the gate voltages, the number of
ballistic channels, as well as the degree of spin polarization,
may be expected to be modified.
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